{"id":18067,"date":"2024-04-22T07:46:08","date_gmt":"2024-04-22T07:46:08","guid":{"rendered":"https:\/\/soicau4008.minhngocxoso.com\/?p=18067"},"modified":"2024-04-22T07:46:08","modified_gmt":"2024-04-22T07:46:08","slug":"kinh-nghiem-soi-cau-pascal-bach-phat-bach-trung","status":"publish","type":"post","link":"https:\/\/dichvuxosovip.com\/kinh-nghiem-soi-cau-pascal-bach-phat-bach-trung\/","title":{"rendered":"kinh nghi\u1ec7m soi c\u1ea7u pascal b\u00e1ch ph\u00e1t b\u00e1ch tr\u00fang"},"content":{"rendered":"
<\/p>\n\n\n
M\u1ed9t trong nh\u1eefng y\u1ebfu t\u1ed1 \u1ea3nh h\u01b0\u1edfng tr\u1ef1c ti\u1ebfp t\u1edbi soi c\u1ea7u l\u00f4 ch\u00ednh l\u00e0 \u00e1p d\u1ee5ng c\u00e1c thu\u1eadt to\u00e1n c\u1ee7a to\u00e1n h\u1ecdc \u0111\u1ea7y logic, c\u0169ng nh\u01b0 c\u00e1c chi\u1ebfn thu\u1eadt \u0111\u1ec3 gi\u00fap t\u0103ng c\u01a1 h\u1ed9i chi\u1ebfn th\u1eafng cao h\u01a1n. Trong \u0111\u00f3, c\u00e1ch soi c\u1ea7u Pascal l\u00e0 m\u1ed9t trong nh\u1eefng ph\u01b0\u01a1ng ph\u00e1p \u0111\u01b0\u1ee3c t\u00ednh to\u00e1n m\u1ed9t c\u00e1ch logic c\u00f9ng t\u1ef7 l\u1ec7 th\u00e0nh c\u00f4ng t\u1edbi 80%.<\/p>\n\n\n\n
Tuy nhi\u00ean, \u0111\u1ec3 c\u00f3 th\u1ec3 \u0111\u1ea1t \u0111\u01b0\u1ee3c nh\u1eefng th\u00e0nh c\u00f4ng d\u1ef1a v\u00e0o c\u00e1ch th\u1ee9c soi c\u1ea7u l\u00f4 n\u00e0y \u0111\u00f2i h\u1ecfi anh em ph\u1ea3i tr\u1ea3i qua nhi\u1ec1u kh\u00f3 kh\u0103n. V\u1eady n\u00ean, d\u01b0\u1edbi \u0111\u00e2y l\u00e0 c\u00e1ch th\u1ee9c th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u n\u00e0y \u0111\u01a1n gi\u1ea3n \u0111\u1ec3 anh em c\u00f3 th\u1ec3 tham kh\u1ea3o.<\/p>\n\n\n\n
Soi c\u1ea7u pascal \u0111\u01b0\u1ee3c bi\u1ebft \u0111\u1ebfn l\u00e0 ph\u01b0\u01a1ng ph\u00e1p b\u1eaft l\u00f4 b\u1ea1ch th\u1ee7 kh\u00e1 hi\u1ec7u qu\u1ea3, khi d\u1ef1a v\u00e0o quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal. \u0110\u00e2y l\u00e0 m\u1ed9t thu\u1eadt to\u00e1n do m\u1ed9t nh\u00e0 to\u00e1n h\u1ecdc n\u1ed5i ti\u1ebfng t\u1edbi t\u1eeb Ph\u00e1p l\u00e0 Blaise Pascal ngh\u0129 ra \u0111\u1ec3 t\u00ednh to\u00e1n, hi\u1ec7n nay l\u1ea1i \u0111\u01b0\u1ee3c \u00e1p d\u1ee5ng m\u1ed9t c\u00e1ch hi\u1ec7u qu\u1ea3 v\u00e0o ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u l\u00f4.<\/p>\n\n\n\n
Khi \u00e1p d\u1ee5ng thu\u1eadt to\u00e1n tam gi\u00e1c Pascal \u0111\u1ec3 b\u1eaft l\u00f4 b\u1ea1ch th\u1ee7, anh em s\u1ebd ti\u1ebfn h\u00e0nh li\u1ec7t k\u00ea c\u00e1c h\u00e0ng tam gi\u00e1c tr\u00ean b\u1ea3ng KQXS d\u1ef1a tr\u00ean quy \u01b0\u1edbc b\u1eaft \u0111\u1ea7u tr\u00ean h\u00e0ng 0 b\u1eb1ng 1 s\u1ed1 nh\u1ea5t \u0111\u1ecbnh, c\u00f2n \u0111\u1ed1i v\u1edbi h\u00e0ng ti\u1ebfp theo s\u1ebd \u0111\u01b0\u1ee3c t\u00ednh to\u00e1n b\u1eb1ng c\u00e1ch th\u00eam 1 s\u1ed1 \u1edf tr\u00ean c\u00f9ng v\u1edbi m\u1ed9t s\u1ed1 b\u00ean tr\u00e1i \u1edf tr\u00ean cho \u0111\u1ebfn sang ph\u1ea3i. Cu\u1ed1i c\u00f9ng, ng\u01b0\u1eddi ch\u01a1i s\u1ebd ti\u1ebfn h\u00e0nh l\u1ef1a ch\u1ecdn 2 h\u00e0ng li\u1ec1n k\u1ec1 nhau \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp xen k\u1ebd v\u00e0 c\u1ed1 \u0111\u1ecbnh \u0111\u1ec3 t\u00ecm ra \u0111\u01b0\u1ee3c c\u00e1c c\u1eb7p l\u00f4 b\u1ea1ch th\u1ee7 nh\u1ea5t \u0111\u1ecbnh.<\/p>\n\n\n\n
\u0110\u1ed1i v\u1edbi ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u l\u00f4 theo thu\u1eadt to\u00e1n Pascal kh\u00f4ng ph\u1ea3i l\u00e0 \u0111i\u1ec1u d\u1ec5 d\u00e0ng. Thay v\u00e0o \u0111\u00f3 anh em c\u1ea7n ph\u1ea3i \u0111\u1ea7u t\u01b0 th\u1eddi gian, c\u00f4ng s\u1ee9c \u0111\u1ec3 ph\u00e2n t\u00edch v\u00e0 t\u00ednh to\u00e1n chi ti\u1ebft, k\u1ef9 l\u01b0\u1ee1ng. Ch\u1ec9 c\u00f3 nh\u01b0 v\u1eady m\u1edbi gi\u00fap anh em c\u00f3 th\u1ec3 soi c\u1ea7u pascal ch\u00ednh x\u00e1c c\u00f9ng c\u01a1 h\u1ed9i chi\u1ebfn th\u1eafng cao h\u01a1n.<\/p>\n\n\n\n
Khi ti\u1ebfn h\u00e0nh soi c\u1ea7u Pascal, \u0111i\u1ec1u \u0111\u1ea7u ti\u00ean v\u00e0 c\u01a1 b\u1ea3n m\u00e0 anh em c\u1ea7n ph\u1ea3i ch\u00fa \u00fd ch\u00ednh l\u00e0 x\u00e1c \u0111\u1ecbnh \u0111\u01b0\u1ee3c m\u1ed9t d\u00e3y s\u1ed1 \u0111\u1ea7u ti\u00ean \u0111\u1ec3 l\u00e0m \u0111\u1ebf th\u00e1p tam gi\u00e1c. Ti\u1ebfp \u0111\u1ebfn s\u1ebd ti\u1ebfn h\u00e0nh c\u1ed9ng cho 2 s\u1ed1 \u0111\u1ee9ng c\u1ea1nh nhau s\u1ebd c\u00f3 \u0111\u01b0\u1ee3c m\u1ed9t d\u00e3y s\u1ed1 h\u00e0ng th\u1ee9 hai c\u1ee7a h\u00ecnh tam gi\u00e1c. C\u1ee9 ti\u1ebfp t\u1ee5c l\u1eb7p l\u1ea1i c\u00e1ch t\u00ednh n\u00e0y cho \u0111\u1ebfn khi t\u1ea1o th\u00e0nh m\u1ed9t h\u00ecnh tam gi\u00e1c Pascal th\u00ec d\u1eebng l\u1ea1i.<\/p>\n\n\n\n
D\u01b0\u1edbi \u0111\u00e2y s\u1ebd l\u00e0 m\u1ed9t s\u1ed1 c\u00e1ch soi c\u1ea7u Pascal \u0111\u01a1n gi\u1ea3n, chu\u1ea9n nh\u1ea5t \u0111\u1ec3 anh em c\u00f3 th\u1ec3 \u00e1p d\u1ee5ng.<\/p>\n\n\n\n
\u0110\u00e2y l\u00e0 c\u00e1ch th\u1ee9c soi l\u00f4 \u0111\u1ec1 Pascal hi\u1ec7u qu\u1ea3 nh\u1ea5t hi\u1ec7n nay, khi d\u1ef1a v\u00e0o k\u1ebft qu\u1ea3 gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t tr\u00ean b\u1ea3ng KQXS h\u00f4m nay. Khi anh em c\u00f3 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3, b\u01b0\u1edbc ti\u1ebfp theo c\u1ea7n th\u1ef1c hi\u1ec7n ch\u00ednh l\u00e0 gh\u00e9p ch\u00fang l\u1ea1i v\u1edbi nhau \u0111\u1ec3 ti\u1ebfn h\u00e0nh t\u1ea1o \u0111\u01b0\u1ee3c m\u1ed9t d\u00e3y s\u1ed1 l\u00e0m \u0111\u1ebf th\u00e1p tam gi\u00e1c.<\/p>\n\n\n\n
V\u00ed d\u1ee5: Trong b\u1ea3ng KQXS s\u1ebd c\u00f3 \u0111\u01b0\u1ee3c c\u00e1c d\u00e3y s\u1ed1 c\u1ee7a gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t nh\u01b0 sau: 5226749403<\/p>\n\n\n\n
Ti\u1ebfp \u0111\u1ebfn, anh em s\u1ebd ti\u1ebfn h\u00e0nh \u00e1p d\u1ee5ng thu\u1eadt to\u00e1n quy \u01b0\u1edbc Pascal \u0111\u1ec3 l\u1ea5y 2 s\u1ed1 li\u1ec1n k\u1ec1 c\u1ed9ng l\u1ea1i. Trong tr\u01b0\u1eddng h\u1ee3p k\u1ebft qu\u1ea3 l\u1edbn h\u01a1n 10 th\u00ec s\u1ebd l\u1ea5y h\u00e0ng \u0111\u01a1n v\u1ecb, c\u00f2n s\u1ed1 h\u00e0ng ch\u1ee5c s\u1ebd \u0111\u01b0\u1ee3c \u0111\u1eb7t \u1edf h\u00e0ng th\u1ee9 2 c\u1ee7a tam gi\u00e1c. C\u1ee5 th\u1ec3 khi c\u1ed9ng c\u00e1c d\u00e3y s\u1ed1 ta \u0111\u01b0\u1ee3c: 5+2=7; 2+2=4; 2+6=8; 6+7=13 l\u1ea5y 3 b\u1ecf 1; 7+4=11 l\u1ea5y 1; 4+9=13 l\u1ea5y 3 b\u1ecf 1; 9+4=13 l\u1ea5y 3 b\u1ecf 1; 4+0=4; 0+3=3 => ta \u0111\u01b0\u1ee3c h\u00e0ng th\u1ee9 hai l\u00e0: 748313343.<\/p>\n\n\n\n